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Superconvergence of a Collocation-Type Method for 
Simple Turning Points of Hammerstein Equations 

By Sunil Kumar 

Abstract. In this paper a simple turning point (y = yc, A = Ac) of the parameter- 
dependent Hammerstein equation 

y(t) = f (t) + A f k(t, s)g(s, y(s)) ds, t E [a, b], 

is approximated numerically in the following way. A simple turning point (z = zc 
A = AC) of an equivalent equation for z(t) := Ag(t, y(t)) is computed first. This is done 
by solving a discretized version of a certain system of equations which has (zc, Ac) as 
part of an isolated solution. The particular discretization used here is standard piecewise 
polynomial collocation. Finally, an approximation to yc is obtained by use of the (exact) 
equation 

b 

y(t) = f (t) + k(t, s)z(s) ds, t E [a, b]. 

The main result of the paper is that, under suitable conditions, the approximations to 
yC and Ac are both superconvergent, that is, they both converge to their respective exact 
values at a faster rate than the collocation approximation (of zC) does to zc. 

1. Introduction. We consider parameter-dependent Hammerstein equations 
of the form 

rb 

(1.1) y(t) = f(t) + A L k(t, s)g(s, y(s)) ds, t E [a, b], 

where -oo < a < b < oo, A E R is the parameter, f, k, and g are known functions, 
with g(s, v) nonlinear in v, and the pair (y = yC, A = Ac) is a simple (that is, 
quadratic) turning point of (1.1) which is to be determined numerically. (For the 
definition of a simple turning point see the first paragraph of Section 3.) 

We do this by an approximation procedure which hinges on an equivalent equa- 
tion (see (1.4)) for the function z defined by 

(1.2) z(t) := Ag(t, y(t)), t E [a, b]. 

On substituting (1.2) into (1.1) we have immediately 

rb 

(1.3) y(t) = f(t) + L k(t, s)z(s) ds, t E [a, b], 

and hence it follows from (1.2) that z satisfies the nonlinear integral equation 

b 
(1.4) z(t) = Ag t, f (t) +; k(t, s)z(s) ds , t E [a, b]. 
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The equivalence of (1.4) and (1.1) (Kumar and Sloan [13]) is in the sense that 
there is a one-to-one correspondence between their solution sets (see Lemma 1 for 
details). Thus, corresponding to the simple turning point (yC, AC) of (1.1) is a 
simple turning point (z = ZC, A = Ac) of (1.4). It is the latter turning point that 
is actually computed in this paper. This computation is done via the enlarged 
system approach of Moore and Spence [14], with piecewise polynomial collocation 
(Atkinson, Graham and Sloan [4], Joe [7]) as the underlying discretization. 

The desired approximation to yc is then obtained by use of the (exact) equation 
(1.3). Thus, essentially, yc is approximated by the collocation-type method of 
Kumar and Sloan [13] (see also Kumar [11]). 

The rest of the paper is organized as follows. Section 2 provides necessary 
background material, while Section 3 gives details of our approximation procedure. 
Section 3 also establishes the convergence of the approximations to zc, Ac, and yC, 
this being done there by a simple application of a theorem of Spence and Moore 
[16]. In Section 4 the theorem of Spence and Moore is used again, and hence it is 
shown that, under suitable conditions, the approximations to yc and Ac are both 
superconvergent, that is, they both converge to their respective exact values at a 
faster rate than the collocation approximation (of zC) does to zc. In Section 5 
numerical results are presented. 

2. Preliminaries. It is convenient to consider (1.1) in the Banach space 
C = C[a, b] of continuous, real-valued functions on [a, b]. Recall that this space 
is equipped with the uniform norm 

Ix100 = sup x(t)I, x E C. 
a<t<b 

On the other hand, it is convenient to consider (1.4) in the Banach space R = R[a, b] 
of bounded Riemann-integrable real-valued functions on [a, b], the reason being that 
R permits piecewise continuous approximations to zc to be dealt with (Anselone 
[3, p. 22], Atkinson, Graham and Sloan [4]). Like C, the space R is also equipped 
with the uniform norm. Since a bounded function on [a, b] is Riemann-integrable if 
and only if it is continuous almost everywhere on [a, b], it follows that C is a closed 
subspace of R. 

It is also convenient to make the following assumptions on the functions f, k, 
and g in (1.1): 

Al. f E C; 
A2. the kernel k satisfies 

rb 

sup j k(t, s)l ds < xo 
a<t<b < 

and 
rb 

lim j Ik(t, s) - k(t', s)l ds = 0, t' E [a, b]; 

A3. the function g(t, v) is defined and continuous on [a, b] x R; 
A4. the partial derivative gv(t,v) ag(t,v)/0v exists and is continuous on 

[a, b] x R; 
A5. the partial derivative g9,(tv) ag,(t,v)/0v exists and is continuous on 

[ab] x R; 
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A6. the function g,, satisfies the Lipschitz condition 

Igvv(t, Yi(t)) - gvv(t, Y2(t))I < aIyi(t) - Y2(t)I, 

for some constant a > 0, t E [a,b], and all Y1,Y2 E Bi(yc,p), where 

Bi (yc, p) = {y E C: I Iy ycI- y ?p} < pl, P >O. 

Note that assumption A2 ensures via the Arzela-Ascoli theorem (Kantorovich 
and Akilov [9, p. 27]) that the linear integral operator K, defined by 

rb 

(Kw)(t) 1b k(t, s)w(s) ds, t E [a,b], w E R, 

is a compact operator from R to C (Anselone [1], [2], [3, Proposition 2.10]), and 
hence also from C to C. Being both compact and linear, it is necessarily (Kan- 
torovich and Akilov [9, p. 244]) completely continuous. 

Defining another completely continuous operator T: R -- C by 

T(w)(t) f(t) + (Kw)(t), t E [a,b], w E RI 

and a continuous, bounded operator G: C -- C by 

G(x)(t) := g(t, x(t)), t E [a, b], x E C, 

we rewrite the integral equations (1.1) and (1.4) in operator form as 

(2.1) y = T(AG(y)), y E C, 

and 

(2.2) z = AGT(z), z E RI 

respectively. The two equations are equivalent in the sense of the following lemma. 

LEMMA 1 (Kumar and Sloan [13]) . For A E R, the sets 

OTG y= ( E C: T(AG(y)) = y} and OGT := {Z E R: AGT(z) = z} 

are in one-to-one correspondence. Specifically, AG is a one-to-one operator from 
eTG onto eGT, with inverse T. 

Thus zc = ACG(yc), and yc = T(zc). 

Note that since T is completely continuous from R to C, and G is continuous 
and bounded on C, it follows (Krasnosel'skii and Zabreiko [10, p. 74]) that T(AG) 
is completely continuous on C, and GT is completely continuous on R. The as- 
sumptions A3 and A4 ensure that G is continuously Frechet differentiable on C; its 
Frechet derivative at x E C is the bounded linear operator G'(x) given by 

[G'(x)w](t) = gv(t, x(t))w(t), t E [a, b], w E C. 

If, in addition, Al and A2 hold, then the operator GT is continuously Frechet 
differentiable on R; its Frechet derivative at z E R is the completely continuous 
linear operator (GT)'(z) given by 

[(GT)'(z)w](t) = G'(T(z))(Kw)(t), t E [a, b], w E R. 
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Furthermore, if A5 also holds, then the second Frechet derivative of GT at z E R 
is the symmetric bilinear operator (GT)"(z), on R x R to C, given by 

[(GT)"(z)wx](t) = gvv(t,T(z)(t))(Kw)(t)(Kx)(t), t E [a, b], w, x E R. 

Similarly, T(AG) is twice Frechet differentiable; its first and second Frechet 
derivatives at y E C are given by 

[(TAG)'(y)w](t) = AKG'(y)w(t), t E [a, b], w E C, 

and 

[(TAG)"(y)wx](t) = AKgvv(t,y(t))w(t)x(t), t E [a, b], w, x E C, 

respectively. 
The final assumption (A6) implies that for all Y1, Y2 E B1 (yc, p), 

II(TAG)"(yi) - (TAG)"(Y2)I1 
b 

? JAl sup a lk(t, s)l aIvv(sy(s)) -gvv(sY2(s))lds 
a<t<ba 

b 

? alAl sup | lk(t, s)Ilyi(s)-Y2(s)l ds 
a<t<b a 

? alAl IIKII lyl - Y2llo, 

where 

IIKII = sup a lk(t, s)l ds < oo. 
a<t<ba 

Likewise, for all z1, Z2 E B2 (ZC, p), where 

B2(zC, p) = {z E R: llz-zCllKo < p/IlKlI}, 

it is easily verified that T(zi), T(z2) E Bi (yC, p), and therefore 

ll(GT)"(zi) - (GT)"(Z2)ll 

? 11K1 12 sup lgvv (t, T(zl) (t)) - gvv (t, T(z2) (t)) I 
a<t<b 

? aJJKt 2 sup IT(zl)(t) - T(z2)(t)I 
a<t<b 

? alKll3llzi - Z21lloo 

3. The Approximate Method and its Convergence. Since (zCAC) is a 
simple turning point of (2.2), the following hold by definition (see, for example, 
Moore and Spence [14], [15]): 

D1. zc - ACGT(zc) = 0; 
D2. I - AC(GT)I(zC) has a one-dimensional null space spanned by /c; 
D3. I - AC(GT)'(zc) has closed range; 
D4. [I - AC(GT)'(zc)]* has a one-dimensional null space spanned by the linear 

functional aC; 
(Here * denotes the conjugate of a bounded linear operator on R.) 
D5. ac(GT(zc)) = aC(zc)/Ac $ 0; 

D6. uc([(GT)"(zc)]qOcqOc) / 0. 
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It follows from properties DI and D2 that (zC, AC) is a nonisolated solution of 
(2.2). However, (zC, AC) is contained as part of an isolated solution of the following 
system (Moore and Spence [14]): 

(3.1a) z - AGT(z) = 0, 

(3.lb) - A[(GT)'(z)]q5 = 0, 

(3.1c) 1(0) - 1 = 0, 

where A E R, z, q5 E R and I is a bounded linear functional which normalizes q5. 
For our convergence analysis we rearrange (3.1) as 

(3.1'a) z - AGT(z) = 0, 

(3. lb) q-A [(GT)'(AGT(z))]q0 = 0, 

(3.1'c) A - [A - 1($) + 1] = O. 

Note that (3.1) and (3.1') are equivalent in the sense that any solution of (3.1) is a 
solution of (3.1') and vice vera. 

We now write (3.1') in abbreviated form as 

(3.2) Z - F(Z) = 0, 

where Z = (z, s, A), and F is an operator on the Banach space R x R x R. We 
equip this product space with the product norm 

liZlI = max(JlzJo, I1q1 Aloo, JAI), Z E R x R x R. 

LEMMA 2 (Moore and Spence [14]). Suppose Al to A5 hold, and l(q$C) = 1. 
Then Zc = (zc, Xc, Ac) is an isolated solution of (3.2). 

3.1. Algorithmic Details of the Approximation Procedure. In the present work 
we approximate (zC, qcC, Ac) by (Zn, d nI An), where zn and O$n are of the form 

n 

Zn(t) = E anjunj(t), t E [a, b], 
j=1 

n 

n, (t) = E bnjUnj(t), t E [a, b], 
j=1 

and {un1, ... ., unn} is a set of basis functions for some chosen approximating space. 
We determine the unknowns ani i ... , ann bnlX ... , bnn and An by collocating (3.1) 
at n distinct points Tnl, X.. . X Tnn in [a, b]: 

Zn (mini) -An [GT (zn)] (ini) = 0 n 
On NO - An[(GT)'(Zn)0n](ni) = 0 1 

(qn) - 1 = 0. 

Thus we discretize (3.1) by the standard collocation method. 
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In practice, the computation of the 2n + 1 unknowns ani 1,. , ann, bn 1 ,. bnn, 

and An may be arranged in the following manner. Let 

an3 = 1, .. , n, 

xj = bns j-n i j n + 1, - 2n, 

1 An, j =2n + 1, 

Ai f (Tni), i=1, . .., n, 

Ui= (Un(ni), 1 < ij < n, 

and Ib 
K = - k(rni, s)Unj(s) ds, I < ij < n. 

Then the unknowns x1, ... , X2n+1 satisfy the system of equations 

nn 

>=1 - =0 E Xji Xn12n+i 9 (TniTLEi f) + E XjKj = 

n~~~~~~ 

I (E Xf+J nj ) 1 0. 

Since yC = T(zc), we define our approximation to yC to be 

Yn := T(Zn). 

It then follows that 
n rb 

yn(t) =f (t) + E xj f k(t, s)unj(s) ds, t E [a, b]. 
j=j 

3.2. Analysis of the Approximate Method. We consider the case where the 

collocation approximations zn and On are sought in piecewise polynomial function 
spaces. 

For any natural number N, let 

HN: a = s1 < S2 < < SN < SN+1 = b 

be a partition of [a, b], and let h = h(N) = max1<?<N(sj+1 - si). We assume that 
h -- 0 as N -- ox and that the partition IIN is quasi-uniform, that is, there exists 
a constant g such that, for all N. h < g1minl<i<N(Si+1 - si). 

With r a positive integer and v an integer satisfying 0 < v < r, let Sr'N denote 
the space of piecewise polynomial functions of order r and continuity v. This 
terminology may be better understood by noting that a function w E Sr'N if and 
only if it is a polynomial of degree < r -1 on each subinterval (si, si+,), 1 < i < N. 

and has v - 1 continuous derivatives on (a, b). If v = 0, there is no continuity 
requirement at the breakpoints si, 1 < i < N + 1, in which case we arbitrarily take 
each w E So9N to be right-continuous at si = a, and left-continuous at every other 
s,, 2 <i <N + 1. 
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For n = dim(Sr N) = (N-1)(r-v) + r, let {unj}i Jn be a set of basis func- 
tions for Sr N, and choose a set frnjjn' of distinct points in [a, b] such that the 
n x n matrix (Unj(Tni)) is nonsingular. Furthermore, let Pn be the interpolatory 
projection operator from C + Sr'N onto Sr No which satisfies the condition 

(PnW)(+ni) = W(mni)X i = 1' ... n, 

for all w E C + Sr'N. Then our discretization of (3.1) is represented by the system 
of equations 

(3.3a) Zn- AnnGT(zn) = 0, 

(3.3b) On- AnPnG'(T(zn))Kqn = 0, 

(3.3c) 1(dn) - 1 = O0 

where Zn = Pnzn E SrV 1N = Pndn E SrN, and An E R. 
While we use (3.3) for computational purposes, to prove the existence and con- 

vergence of a turning point of (3.3a), we consider the following discretization of 
(3.1'): 

(3.3'a) Zn- AnnPGT(zn) = 0, 

(3.3'b) On- An[(PnGT)/(AnPnGT(zn))]On = 0, 

(3.3'c) An- [An - I(qn) + 1] = 0. 

This system we write in abbreviated form as 

(3.4) Zn - Fn(Zn) = O0 

where Zn = (Zn, dOn, An), and Fn is an operator from R x R x R to Sr'N X SrvN X R. 

Compact operator equations of the form (3.2) and (3.4) have been analyzed by 
Spence and Moore [16]. Here we apply their third theorem to prove the convergence 
of a solution Zn of (3.4) to the solution Zc of (3.2). But before we can do this, 
we need to impose the additional constraints on the (collocation) points {mni}j-L1 
that they be chosen to ensure that Pn is uniformly bounded as an operator from 

C + STN to ST N, that is 

(3X5) ||Pnjj < C3i 

where C3 > 0 is independent of n, and 

(3.6) lim I1w-PnwllIK = 0 for all w E C. 
n- oo 

Remark 1. Throughout this paper, cl,..., c5 denote positive generic constants 
which may take different values at their different occurrences but which are always 
independent of n. 
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THEOREM 1. Let (yC, AC) be a simple turning point of (2.1), and let (zc, AC) be 
the corresponding simple turning point of (2.2). Suppose Al to A6 hold, the inter- 
polatory operator Pn satisfies (3.5) and (3.6), and l(/c) = 1. Then, for sufficiently 
large n, (znX, qn, An) E SrN x SrN x R is an isolated solution of system (3.3'), and 

max(Ilzc - _ II0c - |n|l, jAc - AO) 
< ClllZ - PnZc|loo + C2|Ikc - P- icl|o| 

Proof. An application of Theorem 3 of Spence and Moore [16] yields the re- 
sult. Two of the less trivial assumptions to check are the collective compactness 
(Anselone [3, p. 94]) of {Pn GT, n > 1} on R, and the pointwise convergence of 
PnGT to GT on R. The former condition follows from Weiss [19], and the latter 
from the mapping properties of GT, and (3.6). 

From Theorem 3 of Spence and Moore [16] we have immediately that 

max(Ilzc - zn110, IIkc - ?nllI IAc - A I) 
<C5 max(jjzc- pz joo 5, C - AC[(PnGT)/(PnzC)]q0Co00). 

The result now follows from the argument 

II0c - AC[(PnGT)/(PnzC)]0CIj00 
< Ik0c - AC[(PnGT)/(zC)]0Cjj00 

+ IIAc[(PnGT)'(ZC)]hkC - Ac[(PnGT)'(Pnzc)]0cjIoI 

-0 - p- Pqc~l + IlACPn[(GT)'(zC) - (GT)t(PnZc)]0qcjjo 

< Ik0c - _Pn?clo + c411(GT)/(zc) - (GT)/(Pnzc)Ijoo 

< Ikkc - Pn$C||oo + C31|zc - PnZcIlooI 

where in going from the second last step to the final step we have used a mean 
value theorem (Kantorovich and Akilov [9, p. 500]) since (GT)"(z) exists and is 
bounded for all z in a neighborhood of zc. o 

Remark 2. The fact that (3.3') has an isolated solution (zn, O$n, An) implies that 
(zn, An) is a simple turning point of (3.3a). 

Remark 3. Conditions (3.5) and (3.6) do not hold in the case of collocation with 
global polynomials, and thus a different approach needs to be adopted to prove the 
convergence of Zn to Zc. For a possible approach see Kumar [12]. 

Since our approximation to yc is 

(3.7) Yn = T(zn), 

where zn E Sr N is part of the isolated solution (zn, O$n, An) of system (3.3') (see 
Theorem 1), it follows from 

IIY - Ynloo = IIK(zc - zn)lloo < IIKII IIzC - zn1 

that the rate of convergence of Yn to yc is no worse than that of zn to zc. In the 
next section we show that the convergence rate of Yn to yc (and also that of An to 
AC) may be better than that of zn to zc. 
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4. Superconvergence Results. For 1 < p < ox, let Lp = Lp(a, b) denote the 
Banach space of measurable, real-valued functions on (a, b) which have integrable 
pth power. The norm on this space is defined by 

b \ /p 

Iw11P =jIlw(s)IPds , wE LP. 

Let Lo, = LO, (a,b) denote the Banach space of essentially bounded real-valued 
functions on (a, b). This space has the norm 

lIwiK = esssup Iw(t), w E L,. 
a<t<b 

Finally, let Wp = Wp (a, b), for m a nonnegative integer and 1 < p < 00, be the 
Sobolev space of functions w such that w(') E Lp for i = 0, 1, ... , m, where w(') is 
the ith distributional derivative of w. This space we equip with the norm 

m 

| |W| 1mP = E I Iw(i) I IP. 
i=O 

The following corollary to Theorem 1 holds for any set of collocation points for 
which the operator Pn satisfies (3.5) and (3.6), and may be obtained quite easily 
from an approximation-theoretic result in Graham, Joe and Sloan [5, Theorem 3.1]. 

COROLLARY 1. If zc E WA,, ,u ? 1, and c E WlY6, 6 > 1, then 

max(Ilzc - znloo, IIc - OnIloo Ac - An) = 0(h() 

where ( = min(,u, 6, r). 

Up to this point, the analysis predicts a convergence rate of O(h0) for both An 
and Yn. In this section we carry the analysis further, and hence show that, under 
suitable conditions, both Yn and An may converge at a rate o(h'). 

We begin by noting that corresponding to the enlarged system (3.1) for (zC, AC) 
is an analogous system for (yC, Ac): 

(4.1a) y - T(AG(y)) = 0, 

(4.1b) - AKG'(y)otb = 0, 

(4.1c) L(4) - 1 = 0, 

where A E R, y, / E C and L is a bounded linear functional which normalizes /. 

For our subsequent analysis we rearrange (4.1) as 

(4.1/a) y - T(AG(y)) = 0, 

(4. 1/b) - [(TAG)'(TAG(y))] 0 = 0, 

(4.1'c) A-[A-L(k) + 1] = 0. 

Note that (4.1) and (4.1') are equivalent in the sense that any solution of (4.1) is a 
solution of (4.1') and vice versa. 
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We now write (4.1') in abbreviated form as 

(4.2) Y - H(Y) = 0, 

where Y = (y, 0, A), and H is an operator on the Banach space C x C x R. We 
equip this product space with the product norm 

IIYII = max(llylloo, llAlloo, JAI), Y E C x C x R. 

LEMMA 3 (Moore and Spence [14]). Let {XC}, L(OC) = 1, be a basis of 
the null space of the operator I - ACKG'(yc), and suppose Al to A5 hold. Then 
YC = (yC, XC, AC) is an isolated solution of (4.2). 

From Lemmas 1 to 3 it follows, if z = zc and A = AC, that 

X= ACG1(yc)0c 

is a solution of (3.lb). Similarly, if y = yc and A = AC, then 

(4.3) X = Koc 

is a solution of (4.1b). Thus, just as we approximate yc = T(zC) by Yn = T(zn) 
(see (3.7)), we may approximate oc by 

(4.4) On = Kin, L(On) = 1, 

where O$n E Sr N is part of the isolated solution (zn, On, An) of system (3.3') (see 
Theorem 1). 

Using (3.3'), we write (3.7) and (4.4) as the system of equations 

n- T(An~nG(Yn)) = O0 

(4.5) On- [(T~n~nG)/(T~n~ nG(YnM)n = 0, 

L(On) - 1 = O0 

and then abbreviate (4.5) as 

(4.6) Yn - Hn(yn) = 0, 

where Yn = (Yn, On, An), and Hn is an operator on C x C x R. An application of 
Theorem 3 of Spence and Moore [16] now gives the following result. 

THEOREM 2. Let (yC, Ac) be a simple turning point of (2.1), and let (zC, AC) be 
the corresponding simple turning point of (2.2). Suppose Al to A6 hold, the inter- 
polatory operator Pn satisfies (3.5) and (3.6), and l(0C) = 1. Then, for sufficiently 
large n, (Yn, On, An) E C x C x R is an isolated solution of system (4.5), and 

(4.7) ~ maxQi 8-y |nlo | 10 - |X -n llooi X~ - -AnDl 
< C3I K(zc - PnZC)lloo + c4I K(qc - PnqcC) I lo. 

Proof To derive (4.7), note that Theorem 3 of Spence and Moore [16] gives 
immediately that 

max(IlYc - Ynl 110 llO-nllooi J|c - AnD 

< c5 max(IIK(zc - Pnzc)llJ, lK0C - [(TAcPnG)/(TPnzc)]bcJl11), 

and an argument similar to that given in the proof of Theorem 1 yields 

llK~c - [(TACPnG)/(T~nzc)]0c)Clloo 

< llK(c -PnqC)ll-o +c2llK(zc -PnZC)ll- [1 
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Inequality (4.7) is the key to the derivation of our superconvergence results for yn 
and An. The results given here are for the cases v = 0 and v = 1 only, and appear 
in Theorem 3. It should be noted that Theorem 3 holds only if the collocation 
points {rnj}>1 are chosen, for each case v = 0 and v = 1, in the specific way 
indicated below. 

Case v = 0. Recall that the dimension of SON is n = Nr, and hence Nr 
collocation points are needed. These should be selected as follows. Let i,... , fr be 
the zeros of the rth degree Legendre polynomial (Dr (a), s E [-1, 1]. (Note that these 
zeros are known as the Gauss-Legendre points.) Take as the collocation points the 
points 1, .. ., fr shifted linearly to each subinterval (si ISi+1) 1 < i < N: 

Tn,(i-l)r+j = (Si + Si+1 + (Si+1 - si)5j)/2, 1 < j < r, 1 < i < N. 

Case v = 1. In this case the collocation approximations to z' and Xc are sought 
in S1 the space of continuous piecewise polynomial functions, and hence r is 
necessarily > 2. The n = Nr - N + 1 collocation points should be taken to be the 
breakpoints si, 1 < i < N + 1, plus the r - 2 Lobatto points (that is, the zeros 
of the first derivative of (Ir1 (S), s E [-1, 1]) shifted linearly to each subinterval 
(siI si+1) 1 < i < N. Thus, if we let Sr-l = 1 and, for r > 3, we let ~1, . 2 be 
the r - 2 Lobatto points, then the collocation points are 

Tn,(i-1)(r-l)+j+l = (Si + Si+1 + (Si+1 - si)Sj)/2 1 < j <r - 1 1 < i < N. 

with Tnl = Si = a. 
For the above sets of collocation points, the corresponding interpolatory oper- 

ator Pn satisfies (3.5) and (3.6) (Vainikko and Uba [18]), and Yn may exhibit the 
(super)convergence rate indicated in the next theorem. (There, kt (S) := k(t, s) for 
t, s E [a, b].) 

THEOREM 3. Let (yC, Ac) be a simple turning point of (2.1), and let (zC, AC) 
be the corresponding simple turning point of (2.2). Suppose Al to A6 hold, and 
l(0c) = 1. If zc EW', p,> 1, Xc EWj6, 6 > 1, andkt EWl, 1 <m<r, with 
I ktIIm,j bounded independently of t, then for sufficiently large n, 

max(Ilyc -YnIloo, Ic - OInlloor jAc - A) = 0(h5>), 

where By,, = min(m + r, 6, 2r - 2v), v = 0 or 1. 

Proof. The result is derived from inequality (4.7) by the arguments of Graham, 
Joe and Sloan [5] for the case v = 0, and Joe [7] for the case v ='1. 0 

Thus, even though Zn exhibits at most an O(hr) convergence rate, both Yn and 
An may exhibit up to an O(h2r) convergence rate in the case v = 0, and up to an 
O(h2r-2) convergence rate in the case v = 1. Note that there is no superconvergence 
when continuous piecewise-linear functions (v = 1, r = 2) are used. 

5. A Numerical Example. In this section we compute the simple turning 
point of an integral equation reformulation of the nonlinear two-point boundary 
value problem 

y" (t) - A exp(y(t)) =0, t E (0 1); y(O) = y(l) = 0, A > 0 
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which arises in the theory of spontaneous combustion of an infinite slab of exother- 
mically reacting material (Gray and Wake [6], Thomas [17]). This problem is 
symmetric about t = 1/2, and has solutions of the form 

y(t) = ln(fl) - 21n(cosh((2t - 1) VAf/8)), t E [0,1], 

where d satisfies the equation 

- cosh2( Afl/8) = 0. 

A simple turning point exists at AC = 3.513830719125..., and there are two solu- 
tions for 0 < A < AC. 

The problem may be reformulated as the integral equation 

y(t) = -A j k(t, s) exp(y(s)) ds, t E [0,1], 

where 

{~t -s sl t), S < ti 
6) ,> t. 

The enlarged system that we solve for (zC, Xc, AC) is 

z(t) - A exp (- 1 k(t, s)z(s) ds) = 0, 

0(t) + A exp (- k(t, s)z(s) ds) | k(t, s)q5(s) ds = 0, 

0(1/2) - 1 = 0. 

Results for the case of piecewise constant functions (v = 0, r = 1), equally 
spaced breakpoints, and a set of collocation points consisting of the midpoints of 
each subinterval, are displayed in Table 1. The observed rates of convergence may 
be deduced from the columns headed EPOH which contain estimates of the power 
of h. Note that the observed rates support the theoretical predictions of Corollary 
1 ( = 1) and Theorem 3 (-yo = 2). 

TABLE 1 (v = 0, r = 1) 

N I1zcZnIloo EPOH IIYYnIloo EPOH IAc-Anl EPOH 
4 2.60 EOO 0.984 1.24 E-2 2.14 5.64 E-2 1.99 
8 1.31 EOO 0.994 2.83 E-3 2.03 1.42 E-2 2.00 

12 8.79 E-1 0.997 1.24 E-3 2.03 6.34 E-3 2.00 
16 6.60 E-1 0.998 6.91 E-4 2.05 3.57 E-3 2.00 
20 5.28 E-1 0.999 4.38 E-4 2.01 2.28 E-3 2.00 
24 4.40 E-1 3.03 E-4 1.59 E-3 

Table 2 shows the results for the case of discontinuous piecewise linear functions 
(v = 0, r = 2), equally spaced breakpoints, and a set of collocation points consist- 
ing of the two Gauss-Legendre points, -1/V? and 1/Vs, shifted linearly to each 
subinterval. Note that the results suggest an 0(h4) convergence rate for both y, 
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and An whereas, because kt(s) E W (0, 1) but kt(s) ? W2(0, 1), Theorem 3 predicts 
a rate of only 0(h3). This discrepancy occurs because the Sobolev spaces used in 
this paper are of integral order only: in such a setting the prediction of Theorem 3 
is the best possible. If, however, the analysis were to be carried out in the fractional 
derivative space setting used by Joe [8] in his study of the superconvergence phe- 
nomenon for (linear) second-kind Fredholm integral equations then, for this case, 
an h4 order of convergence would be predicted for both y, and A,. 

TABLE 2 (v = 0, r = 2) 

N IzI-ZnIko EPOH IIYC-YnIOO EPOH IA'-AnI EPOH 

4 5.68 E-1 1.79 7.20 E-4 3.80 9.25 E-5 7.27 
8 1.64 E-1 1.93 5.16 E-5 3.89 5.99 E-7 1.98 

12 7.50 E-2 1.97 1.06 E-5 3.94 2.69 E-7 3.38 
16 4.26 E-2 1.98 3.42 E-6 3.97 1.02 E-7 3.67 
20 2.74 E-2 1.99 1.41 E-6 3.99 4.48 E-8 3.79 
24 1.91 E-2 6.81 E-7 2.25 E-8 
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